
Upregulation of Excitatory Amino Acid Transporters
by Coexpression of Janus Kinase 3

Jamshed Warsi • Dong Luo • Bernat Elvira •

Kashif Jilani • Ekaterina Shumilina •

Zohreh Hosseinzadeh • Florian Lang

Received: 3 April 2014 / Accepted: 26 May 2014 / Published online: 14 June 2014

� Springer Science+Business Media New York 2014

Abstract Janus kinase 3 (JAK3) contributes to cytokine

receptor signaling, confers cell survival and stimulates cell

proliferation. The gain of function mutation JAK3A572V is

found in acute megakaryoplastic leukemia. Replacement of

ATP coordinating lysine by alanine yields inactive

JAK3K855A. Most recent observations revealed the capacity

of JAK3 to regulate ion transport. This study thus explored

whether JAK3 regulates glutamate transporters EAAT1-4,

carriers accomplishing transport of glutamate and aspartate

in a variety of cells including intestinal cells, renal cells,

glial cells, and neurons. To this end, EAAT1, 2, 3, or 4

were expressed in Xenopus oocytes with or without addi-

tional expression of mouse wild-type JAK3, constitutively

active JAK3A568V or inactive JAK3K851A, and electrogenic

glutamate transport was determined by dual electrode

voltage clamp. Moreover, Ussing chamber was employed

to determine electrogenic glutamate transport in intestine

from mice lacking functional JAK3 (jak3-/-) and from

corresponding wild-type mice (jak3?/?). As a result, in

EAAT1, 2, 3, or 4 expressing oocytes, but not in oocytes

injected with water, addition of glutamate to extracellular

bath generated an inward current (Ig), which was signifi-

cantly increased following coexpression of JAK3. Ig in

oocytes expressing EAAT3 was further increased by

JAK3A568V but not by JAK3K851A. Ig in EAAT3 ? JAK3

expressing oocytes was significantly decreased by JAK3

inhibitor WHI-P154 (22 lM). Kinetic analysis revealed

that JAK3 increased maximal Ig and significantly reduced

the glutamate concentration required for half maximal Ig

(Km). Intestinal electrogenic glutamate transport was sig-

nificantly lower in jak3-/- than in jak3?/? mice. In con-

clusion, JAK3 is a powerful regulator of excitatory amino

acid transporter isoforms.
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Introduction

The Janus kinase 3 (JAK3) participates in the signaling of

cytokine receptors (Cornejo et al. 2009; Ghoreschi et al.

2009; Imada and Leonard 2000; O’Shea et al. 2002; Shuai

and Liu 2003). As shown in lymphocytes and tumor cells

JAK3 confers cell survival and cell proliferation (de Totero

et al. 2008; Fainstein et al. 2008; Nakayama et al. 2009).

Along those lines, the gain of function mutation

JAK3A572V (Haan et al. 2011) may lead to acute megak-

aryoplastic leukemia (Malinge et al. 2008; Walters et al.

2006). Conversely, JAK3 inhibitors stimulate apoptosis of

neoplastic cells (Kim et al. 2010; Uckun et al. 2007). On

the other hand, JAK3 may facilitate apoptosis (Yamaoka

et al. 2005). JAK3 is involved in the cellular response to

hypoxia and ischemia–reperfusion (Ananthakrishnan et al.

2005; Nagel et al. 2012; Wang et al. 2008). The kinase is

inactivated by replacement of the ATP coordinating lysine

by alanine in the catalytic subunit (JAK3K855A) (Haan et al.

2011).

The pleiotropic effects of JAK3 include regulation of

transport across the cell membrane (Umbach et al. 2013;

Warsi et al. 2013). This study explored whether JAK3

influences the glutamate transporters EAAT1-4, carriers

mediating intestinal and renal transport of acidic amino

acids (Castagna et al. 1997) as well as clearance of excit-

atory amino acids from synaptic clefts (Fainstein et al.
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2008; Kim et al. 2010; Nakayama et al. 2009; Uckun et al.

2007; Yamaoka et al. 2005). Defective glutamate trans-

porters participates in the pathophysiology of several

neuronal disorders including ischemic stroke injury, epi-

lepsy, Alzheimer’s disease, Huntington’s disease, and

amyotrophic lateral sclerosis (Kim et al. 2010).

Materials and Methods

Constructs

Constructs encoding wild-type EAAT1, EAAT2, EAAT3,

and EAAT4 (Hosseinzadeh et al. 2011), wild-type murine

JAK3 (Imagenes, Berlin, Germany), gain of function

mutant JAK3A568V (Haan et al. 2011) and inactive

JAK3K851A mutant (Haan et al. 2011) were used for gen-

eration of cRNA as described previously (Alesutan et al.

2012; Hosseinzadeh et al. 2013).

Voltage Clamp in Xenopus laevis Oocytes

Xenopus oocytes were prepared as previously described

(Henrion et al. 2012; Mia et al. 2012). Where not indicated

otherwise, 10 ng cRNA encoding EAAT1, EAAT2,

EAAT3, or EAAT4 were injected on the first day and 10 ng

cRNA encoding JAK3 (wild type), JAK3A568V or

JAK3K851A were injected on the second day or the same day

after preparation of the oocytes (Pakladok et al. 2013; Pat-

hare et al. 2012a). The oocytes were maintained at 17 �C in

ND96 solution containing (in mM): 88.5 NaCl, 2 KCl, 1

MgCl2, 1.8 CaCl2, 2.5 NaOH, 5 HEPES, 5 sodium pyruvate

(C3H3NaO3), pH 7.4, supplemented with gentamycin

(100 mg/l), tetracycline (50 mg/l), ciprofloxacin (1.6 mg/l),

and theophylline (90 mg/l). The voltage clamp experiments

were performed at room temperature 3 days after injection.

Two-electrode voltage clamp recordings (Almilaji et al.

2013a; Hosseinzadeh et al. 2012a) were performed at a

holding potential of -60 mV. The data were filtered at

10 Hz and recorded with a Digidata A/D–D/A converter

(1322A Axon Instruments) and Clampex 9.2 software for

data acquisition and Clampfit 9.2 software for analysis

(Axon Instruments) (Bogatikov et al. 2012; Hosseinzadeh

et al. 2012b). The control superfusate (ND96) contained (in

mM): 93.5 NaCl, 2 KCl, 1.8 CaCl2, 1 MgCl2, 2.5 NaOH, and

5 HEPES, pH 7.4. Glutamate was added to the solutions at a

concentration of 2 mM, unless otherwise stated. Where

indicated the JAK3 inhibitor WHI-P154 (22 lM) was added

for 24 h prior to the experiments. The flow rate of the

superfusion was approx. 20 ml/min, and a complete

exchange of the bath solution was reached within about 10 s

(Almilaji et al. 2013b; Dermaku-Sopjani et al. 2013).

Ussing Chamber Experiments

All animal experiments were conducted according to the

German law for the welfare of animals and according to the

guidelines of the American Physiological Society and were

approved by local authorities (Regierungspräsidium Tüb-

ingen). Experiments have been performed using intestinal

segments from 16-week-old female gene targeted mice

lacking functional JAK3 (jak3-/-) and from corresponding

wild-type mice (jak3?/?) (Pathare et al. 2012b). The mice

were fed a control diet (1314, Altromin, Heidenau, Ger-

many) and had free access to tap drinking water.

For analysis of electrogenic intestinal glutamate trans-

port, jejunal segments were mounted into a custom made

mini-Ussing chamber with an opening of 0.00769 cm2.

Under control conditions, the serosal and luminal perfusate

contained (in mM): 115 NaCl, 2 KCl, 1 MgCl2, 0.4 KH2

PO4, 1.25 CaCl2, 1.6 K2HPO4, 5 sodium pyruvate, 25

NaHCO3 (pH 7.4, NaOH). Where indicated, glutamate

(20 mM) was added to the luminal perfusate at the expense

of mannitol (20 mM) (all substances were from Sigma,

Schnelldorf, Germany, or from Roth, Karlsruhe, Germany).

In all Ussing chamber experiments, the transepithelial

potential difference (Vt) was determined continuously and

the transepithelial resistance (Rt) was estimated from the

voltage deflections (DVt) elicited by imposing test currents

(It). The resulting Rt was calculated according to Ohm’s

law (Hosseinzadeh et al. 2013).

Statistical Analysis

Data are provided as mean ± SEM, n represents the

number of oocytes or intestinal segments investigated. All

voltage clamp experiments were repeated with at least

three batches of oocytes; in all repetitions qualitatively

similar data were obtained. Data were tested for signifi-

cance using ANOVA or t test, as appropriate. Results with

P \ 0.05 were considered statistically significant.

Results

The pleiotropic effects of JAK3 include regulation of ion

transport. This study explored whether JAK3 influences the

function of the excitatory amino acid transporter isoforms

EAAT1-4. To this end, cRNA encoding EAAT1, EAAT2,

EAAT3, or EAAT4 was injected into Xenopus laevis

oocytes with or without additional injection of cRNA

encoding wild-type JAK3. Electrogenic glutamate trans-

port was estimated from the glutamate-induced inward

current (Ig) utilizing dual electrode voltage clamp (TEVC).

As illustrated in Fig. 1, addition of 2 mM glutamate to the

extracellular bath did not generate an appreciable Ig in
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water-injected Xenopus oocytes or oocytes injected with

JAK3 alone, indicating that Xenopus oocytes do not

express appreciable electrogenic glutamate transport. In

contrast, addition of 2 mM glutamate to the bath generated

a large Ig in Xenopus oocytes expressing EAAT1 (Fig. 1A,

B), EAAT2 (Fig. 1C, D), EAAT3 (Fig. 2A, B), or EAAT4

Fig. 1 Effect of wild-type JAK3 on electrogenic glutamate transport

in EAAT1 or EAAT2-expressing Xenopus laevis oocytes. A Repre-

sentative original tracings showing glutamate (2 mM)-induced cur-

rent in Xenopus oocytes injected with water (a), expressing JAK3

alone (b), expressing EAAT1 alone (c), or expressing EAAT1 with

additional coexpression of wild-type JAK3 (d). B Arithmetic

mean ± SEM (n = 10–27) of glutamate (2 mM)-induced current in

Xenopus oocytes injected with water (dotted bar) or expressing JAK3

alone (gray bar) or expressing EAAT1 alone (white bar), or

expressing EAAT1 together with wild-type JAK3 (black bar).

C Representative original tracings showing glutamate (2 mM)-

induced current in Xenopus oocytes injected with water (a),

expressing EAAT2 alone (b), or expressing EAAT2 with additional

coexpression of wild-type JAK3 (c). D Arithmetic mean ± SEM

(n = 18) of glutamate (2 mM)-induced current in Xenopus oocytes

injected with water (dotted bar) or expressing EAAT2 alone (white

bar), or expressing EAAT2 together with wild-type JAK3 (black bar).

Asterisk indicates statistically significant (P \ 0.05) difference from

Xenopus oocytes expressing EAAT1 or EAAT2 alone

Fig. 2 Effect of wild-type JAK3 on electrogenic glutamate transport

in EAAT3 or EAAT4-expressing Xenopus laevis oocytes. A Repre-

sentative original tracings showing glutamate (2 mM)-induced cur-

rent in Xenopus oocytes injected with water (a), expressing EAAT3

alone (b), or expressing EAAT3 with additional coexpression of wild-

type JAK3 (c). B Arithmetic mean ± SEM (n = 24–25) of glutamate

(2 mM)-induced current in Xenopus oocytes injected with water

(dotted bar) or expressing EAAT3 alone (white bar), or expressing

EAAT3 together with wild-type JAK3 (black bar). C Representative

original tracings showing glutamate (2 mM)-induced current in

Xenopus oocytes injected with water (a), expressing EAAT4 alone

(b), or expressing EAAT4 with additional coexpression of wild-type

JAK3 (c). D Arithmetic mean ± SEM (n = 10) of glutamate

(2 mM)-induced current in Xenopus oocytes injected with water

(dotted bar) or expressing EAAT4 alone (white bar), or expressing

EAAT4 together with wild-type JAK3 (black bar). *P \ 0.05 and

**P \ 0.01 indicate statistically significant difference from Xenopus

oocytes expressing EAAT3 and EAAT4 alone, respectively
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(Fig. 2C, D). The additional expression of JAK3 was fol-

lowed by a significant increase of Ig in EAAT1, EAAT2,

EAAT3, or EAAT4 expressing Xenopus oocytes (Figs. 1,

2).

As illustrated in Fig. 3, the stimulating effect of wild-

type JAK3 on EAAT3 was mimicked by the active mutant

JAK3A568V but not by the inactive mutant JAK3K851A.

Thus, kinase activity was required for the stimulation of

glutamate transport by JAK3. As illustrated in Fig. 4, Ig in

EAAT3 ? JAK3 expressing oocytes was significantly

decreased by JAK3 inhibitor WHI-P154 (22 lM, 24 h).

Additional experiments explored whether JAK3 influ-

ences glutamate transport by modifying maximal transport

rate or affinity of the EAAT3 carrier. To this end, Xenopus

oocytes expressing EAAT3 alone or together with JAK3

were exposed to glutamate concentrations ranging from

10 lM to 10 mM (Fig. 5). Kinetic analysis of the glutamate-

induced currents yielded a maximal current of

39.4 ± 2.5 nA (n = 8–10) in Xenopus oocytes expressing

EAAT3 alone. Coexpression of JAK3 significantly

(P \ 0.05) increased the maximal current to 58.2 ± 8.7 nA

(n = 8–10). The glutamate concentration required for the

half maximal current (Km) was significantly (P \ 0.05)
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Fig. 3 Effect of wild-type JAK3, active mutant JAK3A568V, or

catalytically inactive coexpression on electrogenic glutamate trans-

port in EAAT3-expressing Xenopus laevis oocytes. A Representative

original tracings showing glutamate (2 mM)-induced current in

Xenopus oocytes injected with water (a), expressing EAAT3 alone

(b), or expressing EAAT3 with additional coexpression of constitu-

tively active JAK3A568V (c), or catalytically inactive JAK3K851A (d).

B Arithmetic mean ± SEM (n = 12–16) of glutamate (2 mM)-

induced current in Xenopus oocytes injected with water (dotted bar)

or expressing EAAT3 alone (white bar), or expressing EAAT3

together with constitutively active JAK3A568V (black bar), or

catalytically inactive JAK3K851A (gray bar). *** indicates statistically

significant (P \ 0.001) difference from Xenopus oocytes expressing

EAAT3 alone
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Fig. 4 Effect of JAK3 inhibitor WHI-P154 on electrogenic glutamate

transport in EAAT3 and JAK3-expressing Xenopus laevis oocytes.

A Representative original tracings showing glutamate (2 mM)-

induced current in Xenopus oocytes injected with water (a),

expressing EAAT3 alone (b), or expressing EAAT3 with additional

coexpression of wild-type JAK3 either in the absence (c) or presence

(d) of JAK3 inhibitor WHI-P154 (22 lM). B Arithmetic mean ±

SEM (n = 10–20) of glutamate (2 mM)-induced current in Xenopus

oocytes injected with water (dotted bar) or expressing EAAT3 alone

(white bar), or expressing EAAT3 together with wild-type JAK3

either in the absence (black bar) or presence (gray bar) of JAK3

inhibitor WHI-P154 (22 lM). Asterisk indicates statistically signif-

icant (P \ 0.05) difference from Xenopus oocytes expressing EAAT3

alone, ### statistically significant (P \ 0.001) difference from the

absence of WHI-P154

Fig. 5 Effect of wild-type JAK3 coexpression on the kinetics of

electrogenic glutamate transport in EAAT3-expressing Xenopus

laevis oocytes. Arithmetic mean ± SEM (n = 8–10) of glutamate-

induced current as a function of glutamate concentration in Xenopus

oocytes expressing EAAT3 alone (black circles) or together with

wild-type JAK3 (black squares)
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higher (623 ± 139 lM) in oocytes expressing EAAT3 alone

than in oocytes expressing both, EAAT3 and JAK3

(234 ± 61 lM). Thus, coexpression of JAK3 may increase

EAAT3 activity by enhancing the maximal current and by

reducing the glutamate concentration required for the half

maximal current.

In order to test whether the stimulation of EAAT3 by

JAK3 plays a role in vivo, glutamate-induced current was

measured in jejunal tissue utilizing Ussing chamber

experiments. Glutamate-induced current was determined in

intestine from mice lacking functional JAK3 (jak3-/-) and

from corresponding wild-type mice (jak3?/?). As illus-

trated in Fig. 6, the glutamate-induced current was signif-

icantly higher in intestine from jak3?/? mice than in

intestine from jak3-/- mice.

Discussion

This study discloses a novel regulator of the excitatory

amino acid transporter isoforms EAAT1, 2, 3, and 4. All

four carrier isoforms are stimulated by coexpression of

JAK3. The effect of wild-type JAK3 on EAAT3 is mim-

icked by the active JAK3A568V but not by the inactive

JAK3K851A, indicating that JAK3 kinase activity is required

for the stimulating effect of JAK3 on the glutamate

transporters.

The effect of JAK3 on glutamate transport via EAAT3

was abrogated by the JAK3 inhibitor WHI-P154. Kinetic

analysis revealed that JAK3 increased maximal Ig and

significantly reduced the glutamate concentration required

for half maximal Ig (Km).

The in vivo functional significance of JAK3 sensitive

glutamate transport is supported by the observation that

intestinal electrogenic glutamate transport was significantly

lower in intestinal segments isolated from gene targeted

mice lacking functional JAK3 (jak3-/-) than in intestinal

segments isolated from jak3?/? mice. The difference

between untreated jak3-/- mice and untreated jak3?/?

mice reveals that JAK3 deficiency modifies intestinal

transport under non-stimulated conditions. It cannot fully

be ruled out, however, that the effect of JAK3 deficiency

on intestinal glutamate transport is indirect. JAK3 is pre-

dominantly expressed in hematopoietic cells and partici-

pates in the signal transduction of the common gamma

chain subfamily of cytokine receptors (Cornejo et al.

2009). JAK3 is expressed in macrophages (Johnston et al.

1996) and microglia (Liva et al. 1999), which both may

express EAATs (Gras et al. 2012), At least in theory, JAK3

participates in the regulation of amino acid uptake into

tumor cells expressing JAK3. Whether or not JAK3 influ-

ences glutamate transport in other tissues such as brain

remains to be shown. JAK3 presumably contributes to

interleukin 6 stimulated signaling in neurons (Orellana

et al. 2005), which are known to express EAAT1 (Gaillet

et al. 2001; Rothstein et al. 1994). EAAT1 mediates glu-

tamate uptake into a wide variety of further cells (Hos-

seinzadeh et al. 2011) including glial cells (Amara and

Fontana 2002; Beart and O’Shea 2007; Berger and Hediger

1998; Cholet et al. 2002; Domercq et al. 1999; Sandhu

et al. 2002; Ullensvang et al. 1997), retina (Barnett and

Pow 2000; Derouiche and Rauen 1995), cochlea (Furness

and Lehre 1997; Li et al. 1994), vestibular organ (Takumi

et al. 1997), taste buds (Lawton et al. 2000), adrenal and

pineal glands (Lee et al. 2001; Redecker and Pabst 2000),

and bone cells (Gray et al. 2001; Mason et al. 1997).

EAAT2 is expressed in astrocytes (Gibb et al. 2007; Lehre

and Danbolt 1998; Milton et al. 1997; Rothstein et al. 1996,

2005). EAAT3 is expressed in glial cells (Miralles et al.

2001; van Landeghem et al. 2007), blood–brain barrier

(O’Kane et al. 1999), neurons (Amara and Fontana 2002;

Collin et al. 2003; Furuta et al. 1997, 2005; Huang et al.

2004; Nieoullon et al. 2006; Schmitt et al. 2003; Shas-

hidharan et al. 1997), retinal ganglion cells (Schniepp et al.

5min

-5mV

(a)jak3+/+

(b)jak3-/-

Glutamate 20mM

Glutamate 20mM

-600

-450

-300

-150

0

G
lu

ta
m

at
e 

C
u

rr
en

t 
(µ

A
/c

m
2 )

jak3+/+

jak3-/-

***

A

B

Fig. 6 Glutamate-sensitive transepithelial current in jejunum from

jak3?/? and jak3-/- mice. A Representative original tracings of the

transepithelial jejunal potential difference in wild-type mice (jak3?/?)

(a) and in gene targeted mice lacking functional Jak3 (jak3-/-) (b).

Arrows highlight the addition of glutamate (20 mM). B Arithmetic

mean ± SEM (n = 4) of the glutamate-induced equivalent short-

circuit current in jejunum from jak3?/? (white bar) and jak3-/- mice

(black bar). *** indicates statistically significant (P \ 0.001) differ-

ence from wild-type mice (jak3?/?)
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2004), blood platelets (Rainesalo et al. 2005; Zoia et al.

2004), heart (King et al. 2004), glomerular podocytes

(Gloy et al. 2000), epididymis (Cooper et al. 2003), and

placenta (Matthews et al. 1999; Noorlander et al. 2004).

EAAT4 is specifically expressed in cerebellar Purkinje

cells (Huang et al. 2004). At least in theory, glutamate

uptake may be modified by JAK3 in some of those cells.

In conclusion, JAK3 is a powerful stimulator of all four

excitatory amino acid transporters EAAT1-4. The kinase

up-regulates the maximal transport rate and reduces the

glutamate concentration required for half maximal

EAAT3-mediated glutamate current. The in vivo signifi-

cance of JAK3 sensitive glutamate transport is illustrated

by the observation of reduced intestinal electrogenic glu-

tamate transport in gene targeted mice lacking functional

JAK3.
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