

Upregulation of Excitatory Amino Acid Transporters by Coexpression of Janus Kinase 3

Jamshed Warsi · Dong Luo · Bernat Elvira · Kashif Jilani · Ekaterina Shumilina · Zohreh Hosseinzadeh · Florian Lang

Received: 3 April 2014/Accepted: 26 May 2014/Published online: 14 June 2014
© Springer Science+Business Media New York 2014

Abstract Janus kinase 3 (JAK3) contributes to cytokine receptor signaling, confers cell survival and stimulates cell proliferation. The gain of function mutation JAK3^{A572V} is found in acute megakaryoplasic leukemia. Replacement of ATP coordinating lysine by alanine yields inactive JAK3^{K855A}. Most recent observations revealed the capacity of JAK3 to regulate ion transport. This study thus explored whether JAK3 regulates glutamate transporters EAAT1–4, carriers accomplishing transport of glutamate and aspartate in a variety of cells including intestinal cells, renal cells, glial cells, and neurons. To this end, EAAT1, 2, 3, or 4 were expressed in *Xenopus* oocytes with or without additional expression of mouse wild-type JAK3, constitutively active JAK3^{A568V} or inactive JAK3^{K851A}, and electrogenic glutamate transport was determined by dual electrode voltage clamp. Moreover, Ussing chamber was employed to determine electrogenic glutamate transport in intestine from mice lacking functional JAK3 (*jak3*^{−/−}) and from corresponding wild-type mice (*jak3*^{+/+}). As a result, in EAAT1, 2, 3, or 4 expressing oocytes, but not in oocytes injected with water, addition of glutamate to extracellular bath generated an inward current (I_g), which was significantly increased following coexpression of JAK3. I_g in oocytes expressing EAAT3 was further increased by JAK3^{A568V} but not by JAK3^{K851A}. I_g in EAAT3 + JAK3 expressing oocytes was significantly decreased by JAK3 inhibitor WHI-P154 (22 μM). Kinetic analysis revealed that JAK3 increased maximal I_g and significantly reduced the glutamate concentration required for half maximal I_g

(K_m). Intestinal electrogenic glutamate transport was significantly lower in *jak3*^{−/−} than in *jak3*^{+/+} mice. In conclusion, JAK3 is a powerful regulator of excitatory amino acid transporter isoforms.

Keywords Intestine · EAAT · Oocytes · Mice · JAK3

Introduction

The Janus kinase 3 (JAK3) participates in the signaling of cytokine receptors (Cornejo et al. 2009; Ghoreschi et al. 2009; Imada and Leonard 2000; O’Shea et al. 2002; Shuai and Liu 2003). As shown in lymphocytes and tumor cells JAK3 confers cell survival and cell proliferation (de Totero et al. 2008; Fainstein et al. 2008; Nakayama et al. 2009). Along those lines, the gain of function mutation JAK3^{A572V} (Haan et al. 2011) may lead to acute megakaryoplasic leukemia (Malinge et al. 2008; Walters et al. 2006). Conversely, JAK3 inhibitors stimulate apoptosis of neoplastic cells (Kim et al. 2010; Uckun et al. 2007). On the other hand, JAK3 may facilitate apoptosis (Yamaoka et al. 2005). JAK3 is involved in the cellular response to hypoxia and ischemia–reperfusion (Ananthakrishnan et al. 2005; Nagel et al. 2012; Wang et al. 2008). The kinase is inactivated by replacement of the ATP coordinating lysine by alanine in the catalytic subunit (JAK3^{K855A}) (Haan et al. 2011).

The pleiotropic effects of JAK3 include regulation of transport across the cell membrane (Umbach et al. 2013; Warsi et al. 2013). This study explored whether JAK3 influences the glutamate transporters EAAT1–4, carriers mediating intestinal and renal transport of acidic amino acids (Castagna et al. 1997) as well as clearance of excitatory amino acids from synaptic clefts (Fainstein et al.

J. Warsi · D. Luo · B. Elvira · K. Jilani · E. Shumilina · Z. Hosseinzadeh · F. Lang (✉)
Department of Physiology I, University of Tuebingen,
Gmelinstr. 5, 72076 Tuebingen, Germany
e-mail: florian.lang@uni-tuebingen.de

2008; Kim et al. 2010; Nakayama et al. 2009; Uckun et al. 2007; Yamaoka et al. 2005). Defective glutamate transporters participates in the pathophysiology of several neuronal disorders including ischemic stroke injury, epilepsy, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis (Kim et al. 2010).

Materials and Methods

Constructs

Constructs encoding wild-type EAAT1, EAAT2, EAAT3, and EAAT4 (Hosseinzadeh et al. 2011), wild-type murine JAK3 (Imagenes, Berlin, Germany), gain of function mutant JAK3^{A568V} (Haan et al. 2011) and inactive JAK3^{K851A} mutant (Haan et al. 2011) were used for generation of cRNA as described previously (Alesutan et al. 2012; Hosseinzadeh et al. 2013).

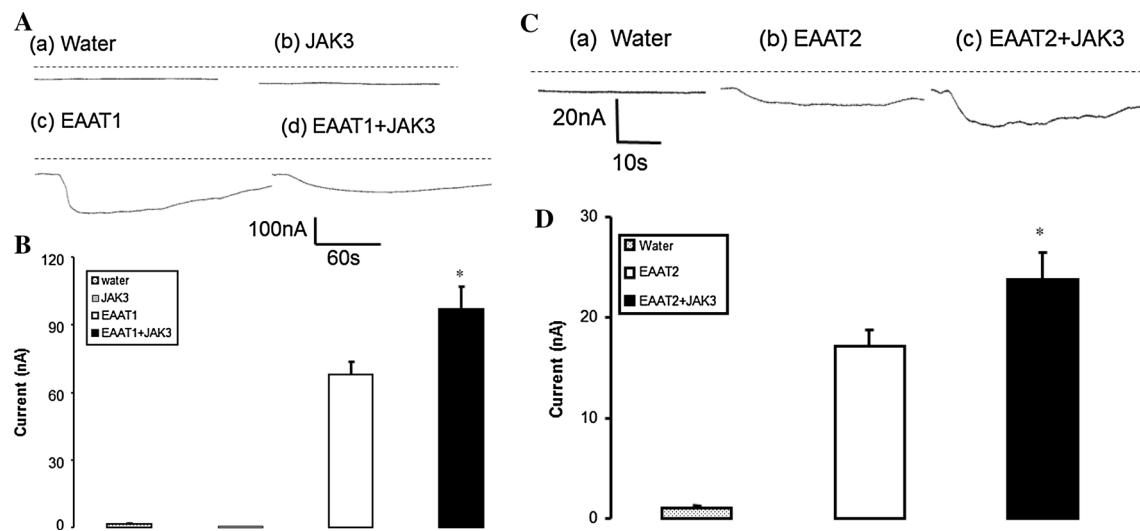
Voltage Clamp in *Xenopus laevis* Oocytes

Xenopus oocytes were prepared as previously described (Henrion et al. 2012; Mia et al. 2012). Where not indicated otherwise, 10 ng cRNA encoding EAAT1, EAAT2, EAAT3, or EAAT4 were injected on the first day and 10 ng cRNA encoding JAK3 (wild type), JAK3^{A568V} or JAK3^{K851A} were injected on the second day or the same day after preparation of the oocytes (Pakladok et al. 2013; Pathare et al. 2012a). The oocytes were maintained at 17 °C in ND96 solution containing (in mM): 88.5 NaCl, 2 KCl, 1 MgCl₂, 1.8 CaCl₂, 2.5 NaOH, 5 HEPES, 5 sodium pyruvate (C₃H₃NaO₃), pH 7.4, supplemented with gentamycin (100 mg/l), tetracycline (50 mg/l), ciprofloxacin (1.6 mg/l), and theophylline (90 mg/l). The voltage clamp experiments were performed at room temperature 3 days after injection. Two-electrode voltage clamp recordings (Almilaji et al. 2013a; Hosseinzadeh et al. 2012a) were performed at a holding potential of -60 mV. The data were filtered at 10 Hz and recorded with a Digidata A/D-D/A converter (1322A Axon Instruments) and Clampex 9.2 software for data acquisition and Clampfit 9.2 software for analysis (Axon Instruments) (Bogatikov et al. 2012; Hosseinzadeh et al. 2012b). The control superfusate (ND96) contained (in mM): 93.5 NaCl, 2 KCl, 1.8 CaCl₂, 1 MgCl₂, 2.5 NaOH, and 5 HEPES, pH 7.4. Glutamate was added to the solutions at a concentration of 2 mM, unless otherwise stated. Where indicated the JAK3 inhibitor WHI-P154 (22 μM) was added for 24 h prior to the experiments. The flow rate of the superfusion was approx. 20 ml/min, and a complete exchange of the bath solution was reached within about 10 s (Almilaji et al. 2013b; Dermaku-Sopjani et al. 2013).

Ussing Chamber Experiments

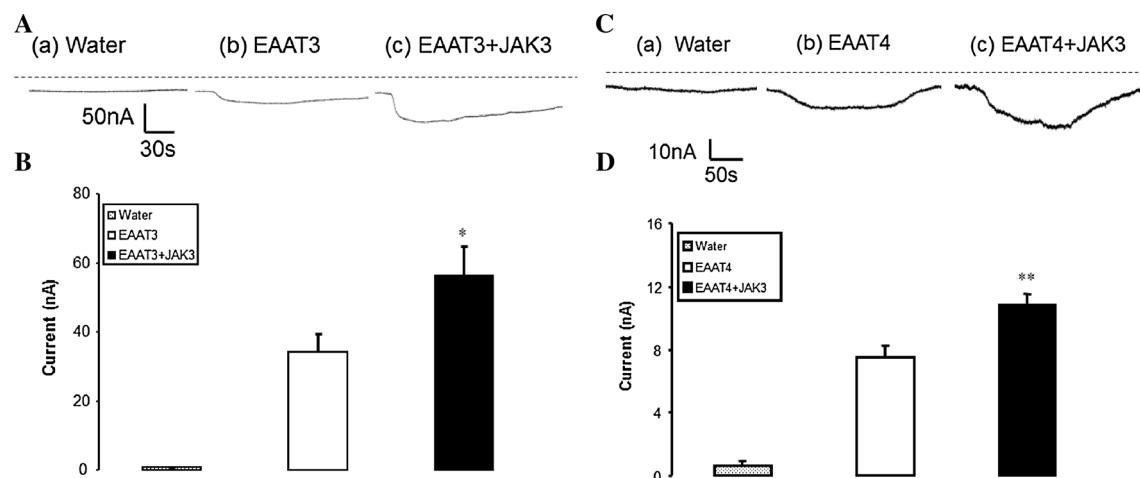
All animal experiments were conducted according to the German law for the welfare of animals and according to the guidelines of the American Physiological Society and were approved by local authorities (Regierungspräsidium Tübingen). Experiments have been performed using intestinal segments from 16-week-old female gene targeted mice lacking functional JAK3 (*jak3*^{-/-}) and from corresponding wild-type mice (*jak3*^{+/+}) (Pathare et al. 2012b). The mice were fed a control diet (1314, Altromin, Heidenau, Germany) and had free access to tap drinking water.

For analysis of electrogenic intestinal glutamate transport, jejunal segments were mounted into a custom made mini-Ussing chamber with an opening of 0.00769 cm². Under control conditions, the serosal and luminal perfusate contained (in mM): 115 NaCl, 2 KCl, 1 MgCl₂, 0.4 KH₂PO₄, 1.25 CaCl₂, 1.6 K₂HPO₄, 5 sodium pyruvate, 25 NaHCO₃ (pH 7.4, NaOH). Where indicated, glutamate (20 mM) was added to the luminal perfusate at the expense of mannitol (20 mM) (all substances were from Sigma, Schnelldorf, Germany, or from Roth, Karlsruhe, Germany).


In all Ussing chamber experiments, the transepithelial potential difference (V_t) was determined continuously and the transepithelial resistance (R_t) was estimated from the voltage deflections (ΔV_t) elicited by imposing test currents (I_t). The resulting R_t was calculated according to Ohm's law (Hosseinzadeh et al. 2013).

Statistical Analysis

Data are provided as mean ± SEM, n represents the number of oocytes or intestinal segments investigated. All voltage clamp experiments were repeated with at least three batches of oocytes; in all repetitions qualitatively similar data were obtained. Data were tested for significance using ANOVA or t test, as appropriate. Results with $P < 0.05$ were considered statistically significant.


Results

The pleiotropic effects of JAK3 include regulation of ion transport. This study explored whether JAK3 influences the function of the excitatory amino acid transporter isoforms EAAT1-4. To this end, cRNA encoding EAAT1, EAAT2, EAAT3, or EAAT4 was injected into *Xenopus laevis* oocytes with or without additional injection of cRNA encoding wild-type JAK3. Electrogenic glutamate transport was estimated from the glutamate-induced inward current (I_g) utilizing dual electrode voltage clamp (TEVC). As illustrated in Fig. 1, addition of 2 mM glutamate to the extracellular bath did not generate an appreciable I_g in

Fig. 1 Effect of wild-type JAK3 on electrogenic glutamate transport in EAAT1 or EAAT2-expressing *Xenopus laevis* oocytes. **A** Representative original tracings showing glutamate (2 mM)-induced current in *Xenopus* oocytes injected with water (*a*), expressing JAK3 alone (*b*), expressing EAAT1 alone (*c*), or expressing EAAT1 with additional coexpression of wild-type JAK3 (*d*). **B** Arithmetic mean \pm SEM ($n = 10-27$) of glutamate (2 mM)-induced current in *Xenopus* oocytes injected with water (dotted bar) or expressing JAK3 alone (gray bar) or expressing EAAT1 alone (white bar), or expressing EAAT1 together with wild-type JAK3 (black bar).

C Representative original tracings showing glutamate (2 mM)-induced current in *Xenopus* oocytes injected with water (*a*), expressing EAAT2 alone (*b*), or expressing EAAT2 with additional coexpression of wild-type JAK3 (*c*). **D** Arithmetic mean \pm SEM ($n = 18$) of glutamate (2 mM)-induced current in *Xenopus* oocytes injected with water (dotted bar) or expressing EAAT2 alone (white bar), or expressing EAAT2 together with wild-type JAK3 (black bar). Asterisk indicates statistically significant ($P < 0.05$) difference from *Xenopus* oocytes expressing EAAT1 or EAAT2 alone

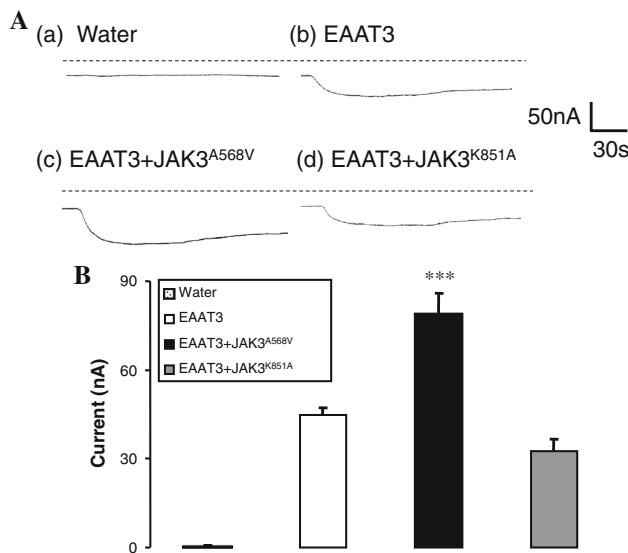


Fig. 2 Effect of wild-type JAK3 on electrogenic glutamate transport in EAAT3 or EAAT4-expressing *Xenopus laevis* oocytes. **A** Representative original tracings showing glutamate (2 mM)-induced current in *Xenopus* oocytes injected with water (*a*), expressing EAAT3 alone (*b*), or expressing EAAT3 with additional coexpression of wild-type JAK3 (*c*). **B** Arithmetic mean \pm SEM ($n = 24-25$) of glutamate (2 mM)-induced current in *Xenopus* oocytes injected with water (dotted bar) or expressing EAAT3 alone (white bar), or expressing EAAT3 together with wild-type JAK3 (black bar). **C** Representative

original tracings showing glutamate (2 mM)-induced current in *Xenopus* oocytes injected with water (*a*), expressing EAAT4 alone (*b*), or expressing EAAT4 with additional coexpression of wild-type JAK3 (*c*). **D** Arithmetic mean \pm SEM ($n = 10$) of glutamate (2 mM)-induced current in *Xenopus* oocytes injected with water (dotted bar) or expressing EAAT4 alone (white bar), or expressing EAAT4 together with wild-type JAK3 (black bar). * $P < 0.05$ and ** $P < 0.01$ indicate statistically significant difference from *Xenopus* oocytes expressing EAAT3 and EAAT4 alone, respectively

water-injected *Xenopus* oocytes or oocytes injected with JAK3 alone, indicating that *Xenopus* oocytes do not express appreciable electrogenic glutamate transport. In

contrast, addition of 2 mM glutamate to the bath generated a large I_g in *Xenopus* oocytes expressing EAAT1 (Fig. 1A, B), EAAT2 (Fig. 1C, D), EAAT3 (Fig. 2A, B), or EAAT4

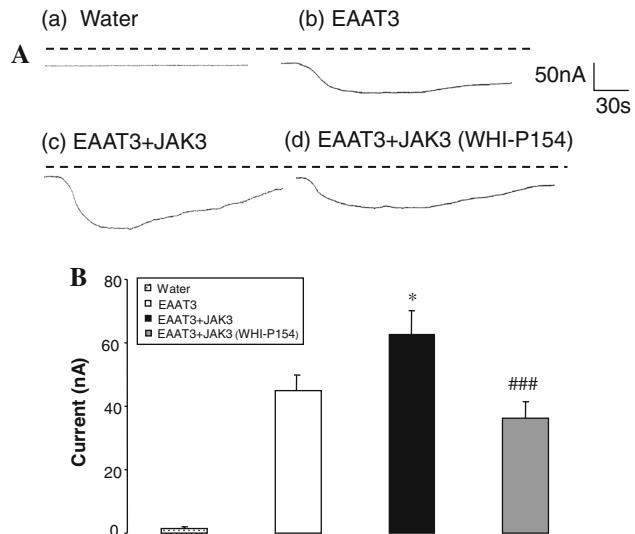
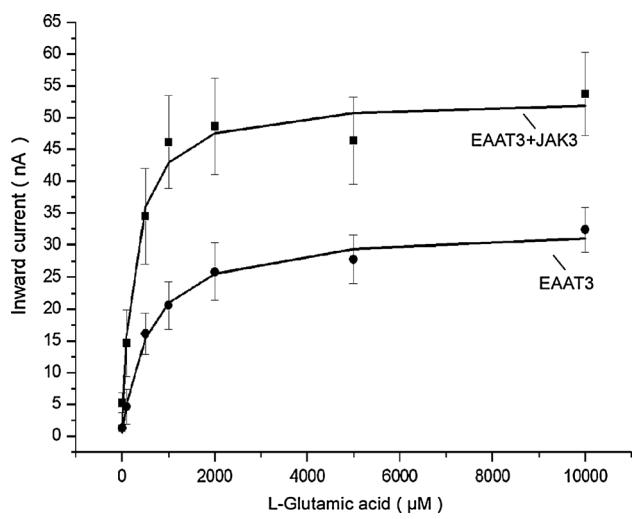


Fig. 3 Effect of wild-type JAK3, active mutant JAK3^{A568V}, or catalytically inactive coexpression on electrogenic glutamate transport in EAAT3-expressing *Xenopus laevis* oocytes. **A** Representative original tracings showing glutamate (2 mM)-induced current in *Xenopus* oocytes injected with water (*a*), expressing EAAT3 alone (*b*), or expressing EAAT3 with additional coexpression of constitutively active JAK3^{A568V} (*c*), or catalytically inactive JAK3^{K851A} (*d*). **B** Arithmetic mean \pm SEM ($n = 12-16$) of glutamate (2 mM)-induced current in *Xenopus* oocytes injected with water (dotted bar) or expressing EAAT3 alone (white bar), or expressing EAAT3 together with constitutively active JAK3^{A568V} (black bar), or catalytically inactive JAK3^{K851A} (gray bar). *** indicates statistically significant ($P < 0.001$) difference from *Xenopus* oocytes expressing EAAT3 alone


(Fig. 2C, D). The additional expression of JAK3 was followed by a significant increase of I_g in EAAT1, EAAT2, EAAT3, or EAAT4 expressing *Xenopus* oocytes (Figs. 1, 2).

As illustrated in Fig. 3, the stimulating effect of wild-type JAK3 on EAAT3 was mimicked by the active mutant JAK3^{A568V} but not by the inactive mutant JAK3^{K851A}. Thus, kinase activity was required for the stimulation of glutamate transport by JAK3. As illustrated in Fig. 4, I_g in EAAT3 + JAK3 expressing oocytes was significantly decreased by JAK3 inhibitor WHI-P154 (22 μ M, 24 h).

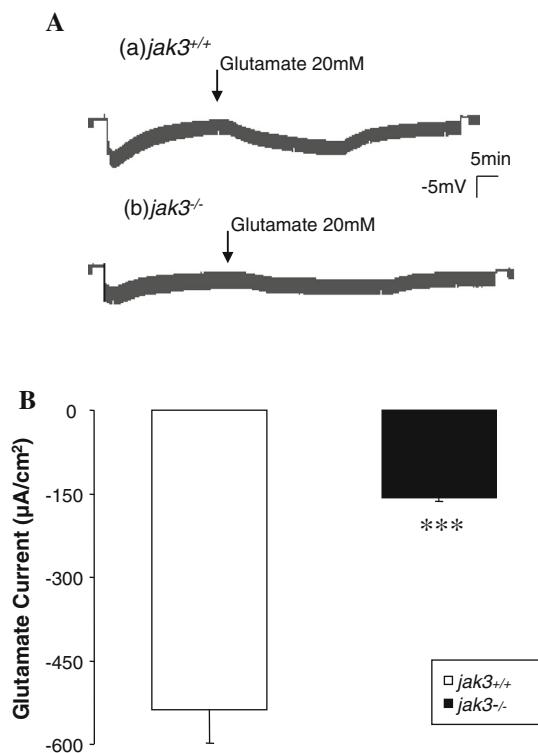

Additional experiments explored whether JAK3 influences glutamate transport by modifying maximal transport rate or affinity of the EAAT3 carrier. To this end, *Xenopus* oocytes expressing EAAT3 alone or together with JAK3 were exposed to glutamate concentrations ranging from 10 μ M to 10 mM (Fig. 5). Kinetic analysis of the glutamate-induced currents yielded a maximal current of 39.4 ± 2.5 nA ($n = 8-10$) in *Xenopus* oocytes expressing EAAT3 alone. Coexpression of JAK3 significantly ($P < 0.05$) increased the maximal current to 58.2 ± 8.7 nA ($n = 8-10$). The glutamate concentration required for the half maximal current (K_m) was significantly ($P < 0.05$)

Fig. 4 Effect of JAK3 inhibitor WHI-P154 on electrogenic glutamate transport in EAAT3 and JAK3-expressing *Xenopus laevis* oocytes. **A** Representative original tracings showing glutamate (2 mM)-induced current in *Xenopus* oocytes injected with water (*a*), expressing EAAT3 alone (*b*), or expressing EAAT3 with additional coexpression of wild-type JAK3 either in the absence (*c*) or presence (*d*) of JAK3 inhibitor WHI-P154 (22 μ M). **B** Arithmetic mean \pm SEM ($n = 10-20$) of glutamate (2 mM)-induced current in *Xenopus* oocytes injected with water (dotted bar) or expressing EAAT3 alone (white bar), or expressing EAAT3 together with wild-type JAK3 either in the absence (black bar) or presence (gray bar) of JAK3 inhibitor WHI-P154 (22 μ M). Asterisk indicates statistically significant ($P < 0.05$) difference from *Xenopus* oocytes expressing EAAT3 alone, ### statistically significant ($P < 0.001$) difference from the absence of WHI-P154

Fig. 5 Effect of wild-type JAK3 coexpression on the kinetics of electrogenic glutamate transport in EAAT3-expressing *Xenopus laevis* oocytes. Arithmetic mean \pm SEM ($n = 8-10$) of glutamate-induced current as a function of glutamate concentration in *Xenopus* oocytes expressing EAAT3 alone (black circles) or together with wild-type JAK3 (black squares)

Fig. 6 Glutamate-sensitive transepithelial current in jejunum from *jak3^{+/+}* and *jak3^{-/-}* mice. **A** Representative original tracings of the transepithelial jejunal potential difference in wild-type mice (*jak3^{+/+}*) (a) and in gene targeted mice lacking functional Jak3 (*jak3^{-/-}*) (b). Arrows highlight the addition of glutamate (20 mM). **B** Arithmetic mean \pm SEM ($n = 4$) of the glutamate-induced equivalent short-circuit current in jejunum from *jak3^{+/+}* (white bar) and *jak3^{-/-}* mice (black bar). *** indicates statistically significant ($P < 0.001$) difference from wild-type mice (*jak3^{+/+}*)

higher ($623 \pm 139 \mu\text{M}$) in oocytes expressing EAAT3 alone than in oocytes expressing both, EAAT3 and JAK3 ($234 \pm 61 \mu\text{M}$). Thus, coexpression of JAK3 may increase EAAT3 activity by enhancing the maximal current and by reducing the glutamate concentration required for the half maximal current.

In order to test whether the stimulation of EAAT3 by JAK3 plays a role in vivo, glutamate-induced current was measured in jejunal tissue utilizing Ussing chamber experiments. Glutamate-induced current was determined in intestine from mice lacking functional JAK3 (*jak3^{-/-}*) and from corresponding wild-type mice (*jak3^{+/+}*). As illustrated in Fig. 6, the glutamate-induced current was significantly higher in intestine from *jak3^{+/+}* mice than in intestine from *jak3^{-/-}* mice.

Discussion

This study discloses a novel regulator of the excitatory amino acid transporter isoforms EAAT1, 2, 3, and 4. All

four carrier isoforms are stimulated by coexpression of JAK3. The effect of wild-type JAK3 on EAAT3 is mimicked by the active JAK3^{A568V} but not by the inactive JAK3^{K851A}, indicating that JAK3 kinase activity is required for the stimulating effect of JAK3 on the glutamate transporters.

The effect of JAK3 on glutamate transport via EAAT3 was abrogated by the JAK3 inhibitor WHI-P154. Kinetic analysis revealed that JAK3 increased maximal I_g and significantly reduced the glutamate concentration required for half maximal I_g (K_m).

The in vivo functional significance of JAK3 sensitive glutamate transport is supported by the observation that intestinal electrogenic glutamate transport was significantly lower in intestinal segments isolated from gene targeted mice lacking functional JAK3 (*jak3^{-/-}*) than in intestinal segments isolated from *jak3^{+/+}* mice. The difference between untreated *jak3^{-/-}* mice and untreated *jak3^{+/+}* mice reveals that JAK3 deficiency modifies intestinal transport under non-stimulated conditions. It cannot fully be ruled out, however, that the effect of JAK3 deficiency on intestinal glutamate transport is indirect. JAK3 is predominantly expressed in hematopoietic cells and participates in the signal transduction of the common gamma chain subfamily of cytokine receptors (Cornejo et al. 2009). JAK3 is expressed in macrophages (Johnston et al. 1996) and microglia (Liva et al. 1999), which both may express EAATs (Gras et al. 2012). At least in theory, JAK3 participates in the regulation of amino acid uptake into tumor cells expressing JAK3. Whether or not JAK3 influences glutamate transport in other tissues such as brain remains to be shown. JAK3 presumably contributes to interleukin 6 stimulated signaling in neurons (Orellana et al. 2005), which are known to express EAAT1 (Gaillet et al. 2001; Rothstein et al. 1994). EAAT1 mediates glutamate uptake into a wide variety of further cells (Hosseinzadeh et al. 2011) including glial cells (Amara and Fontana 2002; Beart and O’Shea 2007; Berger and Hediger 1998; Cholet et al. 2002; Domercq et al. 1999; Sandhu et al. 2002; Ullensvang et al. 1997), retina (Barnett and Pow 2000; Derouiche and Rauen 1995), cochlea (Furness and Lehre 1997; Li et al. 1994), vestibular organ (Takumi et al. 1997), taste buds (Lawton et al. 2000), adrenal and pineal glands (Lee et al. 2001; Redecker and Pabst 2000), and bone cells (Gray et al. 2001; Mason et al. 1997). EAAT2 is expressed in astrocytes (Gibb et al. 2007; Lehre and Danbolt 1998; Milton et al. 1997; Rothstein et al. 1996, 2005). EAAT3 is expressed in glial cells (Miralles et al. 2001; van Landeghem et al. 2007), blood-brain barrier (O’Kane et al. 1999), neurons (Amara and Fontana 2002; Collin et al. 2003; Furuta et al. 1997, 2005; Huang et al. 2004; Nieoullon et al. 2006; Schmitt et al. 2003; Shashidharan et al. 1997), retinal ganglion cells (Schniepp et al.

2004), blood platelets (Rainesalo et al. 2005; Zoia et al. 2004), heart (King et al. 2004), glomerular podocytes (Gloy et al. 2000), epididymis (Cooper et al. 2003), and placenta (Matthews et al. 1999; Noorlander et al. 2004). EAAT4 is specifically expressed in cerebellar Purkinje cells (Huang et al. 2004). At least in theory, glutamate uptake may be modified by JAK3 in some of those cells.

In conclusion, JAK3 is a powerful stimulator of all four excitatory amino acid transporters EAAT1-4. The kinase up-regulates the maximal transport rate and reduces the glutamate concentration required for half maximal EAAT3-mediated glutamate current. The *in vivo* significance of JAK3 sensitive glutamate transport is illustrated by the observation of reduced intestinal electrogenic glutamate transport in gene targeted mice lacking functional JAK3.

Acknowledgments This study was supported by grants from Deutsche Forschungsgemeinschaft (F.L.). The authors gratefully acknowledge the excellent technical support by Elfriede Faber and meticulous preparation of the manuscript by Tanja Loch and Lejla Subasic.

References

Alesutan I, Sopjani M, Dermaku-Sopjani M, Munoz C, Voelkl J, Lang F (2012) Upregulation of Na-coupled glucose transporter SGLT1 by Tau tubulin kinase 2. *Cell Physiol Biochem* 30:458–465

Almilaji A, Munoz C, Hosseinzadeh Z, Lang F (2013a) Upregulation of Na⁺, Cl⁽⁻⁾-coupled betaine/gamma-amino-butyric acid transporter BGT1 by Tau tubulin kinase 2. *Cell Physiol Biochem* 32:334–343

Almilaji A, Szteyn K, Fein E, Pakladok T, Munoz C, Elvira B, Towhid ST, Alesutan I, Shumilina E, Bock CT, Kandolf R, Lang F (2013b) Down-regulation of Na/K⁺ atpase activity by human parvovirus B19 capsid protein VP1. *Cell Physiol Biochem* 31:638–648

Amara SG, Fontana AC (2002) Excitatory amino acid transporters: keeping up with glutamate. *Neurochem Int* 41:313–318

Ananthakrishnan R, Hallam K, Li Q, Ramasamy R (2005) JAK-STAT pathway in cardiac ischemic stress. *Vascul Pharmacol* 43:353–356

Barnett NL, Pow DV (2000) Antisense knockdown of GLAST, a glial glutamate transporter, compromises retinal function. *Invest Ophthalmol Vis Sci* 41:585–591

Beart PM, O’Shea RD (2007) Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. *Br J Pharmacol* 150:5–17

Berger UV, Hediger MA (1998) Comparative analysis of glutamate transporter expression in rat brain using differential double *in situ* hybridization. *Anat Embryol (Berl)* 198:13–30

Bogatikov E, Munoz C, Pakladok T, Alesutan I, Shojaiyefard M, Seebohm G, Foller M, Palmada M, Bohmer C, Broer S, Lang F (2012) Up-regulation of amino acid transporter SLC6A19 activity and surface protein abundance by PKB/Akt and PIKfyve. *Cell Physiol Biochem* 30:1538–1546

Castagna M, Shayakul C, Trott D, Sacchi VF, Harvey WR, Hediger MA (1997) Molecular characteristics of mammalian and insect amino acid transporters: implications for amino acid homeostasis. *J Exp Biol* 200:269–286

Cholet N, Pellerin L, Magistretti PJ, Hamel E (2002) Similar perisynaptic glial localization for the Na⁺, K⁺-ATPase alpha 2 subunit and the glutamate transporters GLAST and GLT-1 in the rat somatosensory cortex. *Cereb Cortex* 12:515–525

Collin M, Backberg M, Ovesjo ML, Fisone G, Edwards RH, Fujiyama F, Meister B (2003) Plasma membrane and vesicular glutamate transporter mRNAs/proteins in hypothalamic neurons that regulate body weight. *Eur J Neurosci* 18:1265–1278

Cooper TG, Wagenfeld A, Cornwall GA, Hsia N, Chu ST, Orgebin-Crist MC, Drevet J, Vernet P, Avram C, Nieschlag E, Yeung CH (2003) Gene and protein expression in the epididymis of infertile c-ros receptor tyrosine kinase-deficient mice. *Biol Reprod* 69:1750–1762

Cornejo MG, Boggon TJ, Mercher T (2009) JAK3: a two-faced player in hematological disorders. *Int J Biochem Cell Biol* 41:2376–2379

de Totero D, Meazza R, Capaia M, Fabbri M, Azzarone B, Balleari E, Gobbi M, Cutrona G, Ferrarini M, Ferrini S (2008) The opposite effects of IL-15 and IL-21 on CLL B cells correlate with differential activation of the JAK/STAT and ERK1/2 pathways. *Blood* 111:517–524

Dermaku-Sopjani M, Almilaji A, Pakladok T, Munoz C, Hosseinzadeh Z, Blecua M, Sopjani M, Lang F (2013) Down-regulation of the Na-coupled phosphate transporter NaPi-IIa by AMP-activated protein kinase. *Kidney Blood Press Res* 37:547–556

Derouiche A, Rauen T (1995) Coincidence of L-glutamate/L-aspartate transporter (GLAST) and glutamine synthetase (GS) immunoreactions in retinal glia: evidence for coupling of GLAST and GS in transmitter clearance. *J Neurosci Res* 42:131–143

Domercq M, Sanchez-Gomez MV, Areso P, Matute C (1999) Expression of glutamate transporters in rat optic nerve oligodendrocytes. *Eur J Neurosci* 11:2226–2236

Fainstein N, Vaknin I, Einstein O, Zisman P, Ben Sasson SZ, Baniyash M, Ben Hur T (2008) Neural precursor cells inhibit multiple inflammatory signals. *Mol Cell Neurosci* 39:335–341

Furness DN, Lehre KP (1997) Immunocytochemical localization of a high-affinity glutamate-aspartate transporter, GLAST, in the rat and guinea-pig cochlea. *Eur J Neurosci* 9:1961–1969

Furuta A, Martin LJ, Lin CL, Dykes-Hoberg M, Rothstein JD (1997) Cellular and synaptic localization of the neuronal glutamate transporters excitatory amino acid transporter 3 and 4. *Neuroscience* 81:1031–1042

Furuta A, Takashima S, Yokoo H, Rothstein JD, Wada K, Iwaki T (2005) Expression of glutamate transporter subtypes during normal human corticogenesis and type II lissencephaly. *Brain Res Dev Brain Res* 155:155–164

Gaillet S, Plachez C, Malaval F, Bezine MF, Recasens M (2001) Transient increase in the high affinity [³H]-L-glutamate uptake activity during *in vitro* development of hippocampal neurons in culture. *Neurochem Int* 38:293–301

Ghoreschi K, Laurence A, O’Shea JJ (2009) Janus kinases in immune cell signaling. *Immunol Rev* 228:273–287

Gibb SL, Boston-Howes W, Lavina ZS, Gustincich S, Brown RH Jr, Pasinelli P, Trott D (2007) A caspase-3-cleaved fragment of the glial glutamate transporter EAAT2 is sumoylated and targeted to promyelocytic leukemia nuclear bodies in mutant SOD1-linked amyotrophic lateral sclerosis. *J Biol Chem* 282:32480–32490

Gloy J, Reitinger S, Fischer KG, Schreiber R, Boucherot A, Kunzelmann K, Mundel P, Pavenstadt H (2000) Amino acid transport in podocytes. *Am J Physiol Renal Physiol* 278:F999–F1005

Gras G, Samah B, Hubert A, Leone C, Porcheray F, Rimaniol AC (2012) EAAT expression by macrophages and microglia: still more questions than answers. *Amino Acids* 42:221–229

Gray C, Marie H, Arora M, Tanaka K, Boyde A, Jones S, Attwell D (2001) Glutamate does not play a major role in controlling bone growth. *J Bone Miner Res* 16:742–749

Haan C, Rolvering C, Rauf F, Kapp M, Druckes P, Thoma G, Behrmann I, Zerwes HG (2011) Jak1 has a dominant role over Jak3 in signal transduction through gamma-c containing cytokine receptors. *Chem Biol* 18:314–323

Henrion U, Zumhagen S, Steinke K, Strutz-Seebohm N, Stallmeyer B, Lang F, Schulze-Bahr E, Seebohm G (2012) Overlapping cardiac phenotype associated with a familial mutation in the voltage sensor of the KCNQ1 channel. *Cell Physiol Biochem* 29:809–818

Hosseinzadeh Z, Bhavsar SK, Sopjani M, Alesutan I, Saxena A, Dermaku-Sopjani M, Lang F (2011) Regulation of the glutamate transporters by JAK2. *Cell Physiol Biochem* 28:693–702

Hosseinzadeh Z, Bhavsar SK, Lang F (2012a) Down-regulation of the myoinositol transporter SMIT by JAK2. *Cell Physiol Biochem* 30:1473–1480

Hosseinzadeh Z, Bhavsar SK, Lang F (2012b) Downregulation of CIC-2 by JAK2. *Cell Physiol Biochem* 29:737–742

Hosseinzadeh Z, Dong L, Bhavsar SK, Warsi J, Almilaji A, Lang F (2013) Upregulation of peptide transporters PEPT1 and PEPT2 by Janus kinase JAK2. *Cell Physiol Biochem* 31:673–682

Huang YH, Dykes-Hoberg M, Tanaka K, Rothstein JD, Bergles DE (2004) Climbing fiber activation of EAAT4 transporters and kainate receptors in cerebellar Purkinje cells. *J Neurosci* 24:103–111

Imada K, Leonard WJ (2000) The Jak–STAT pathway. *Mol Immunol* 37:1–11

Johnston JA, Bacon CM, Riedy MC, O’Shea JJ (1996) Signaling by IL-2 and related cytokines: JAKs, STATs, and relationship to immunodeficiency. *J Leukoc Biol* 60:441–452

Kim BH, Oh SR, Yin CH, Lee S, Kim EA, Kim MS, Sandoval C, Jayabose S, Bach EA, Lee HK, Baeg GH (2010) MS-1020 is a novel small molecule that selectively inhibits JAK3 activity. *Br J Haematol* 148:132–143

King N, Lin H, McGivan JD, Suleiman MS (2004) Aspartate transporter expression and activity in hypertrophic rat heart and ischaemia-reperfusion injury. *J Physiol* 556:849–858

Lawton DM, Furness DN, Lindemann B, Hackney CM (2000) Localization of the glutamate–aspartate transporter, GLAST, in rat taste buds. *Eur J Neurosci* 12:3163–3171

Lee JA, Long Z, Nimura N, Iwatsubo T, Imai K, Homma H (2001) Localization, transport, and uptake of D-aspartate in the rat adrenal and pituitary glands. *Arch Biochem Biophys* 385:242–249

Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. *J Neurosci* 18:8751–8757

Li HS, Niedzielski AS, Beisel KW, Hiel H, Wenthold RJ, Morley BJ (1994) Identification of a glutamate/aspartate transporter in the rat cochlea. *Hear Res* 78:235–242

Liva SM, Kahn MA, Dopp JM, de Vellis J (1999) Signal transduction pathways induced by GM-CSF in microglia: significance in the control of proliferation. *Glia* 26:344–352

Malinge S, Ragu C, Della-Valle V, Pisani D, Constantinescu SN, Perez C, Villevalet JL, Reinhardt D, Landman-Parker J, Michaux L, Dastugue N, Baruchel A, Vainchenker W, Bourquin JP, Penard-Lacronique V, Bernard OA (2008) Activating mutations in human acute megakaryoblastic leukemia. *Blood* 112:4220–4226

Mason DJ, Suva LJ, Genever PG, Patton AJ, Steuckle S, Hillam RA, Skerry TM (1997) Mechanically regulated expression of a neural glutamate transporter in bone: a role for excitatory amino acids as osteotropic agents? *Bone* 20:199–205

Matthews JC, Beveridge MJ, Dialynas E, Bartke A, Kilberg MS, Novak DA (1999) Placental anionic and cationic amino acid transporter expression in growth hormone overexpressing and null IGF-II or null IGF-I receptor mice. *Placenta* 20:639–650

Mia S, Munoz C, Paklakov T, Siraskar G, Voelkl J, Alesutan I, Lang F (2012) Downregulation of Kv1.5K channels by the AMP-activated protein kinase. *Cell Physiol Biochem* 30:1039–1050

Milton ID, Banner SJ, Ince PG, Piggott NH, Fray AE, Thatcher N, Horne CH, Shaw PJ (1997) Expression of the glial glutamate transporter EAAT2 in the human CNS: an immunohistochemical study. *Brain Res Mol Brain Res* 52:17–31

Miralles VJ, Martinez-Lopez I, Zaragoza R, Borras E, Garcia C, Pallardo FV, Vina JR (2001) Na⁺ dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) in primary astrocyte cultures: effect of oxidative stress. *Brain Res* 922:21–29

Nagel S, Papadakis M, Pfleger K, Grond-Ginsbach C, Buchan AM, Wagner S (2012) Microarray analysis of the global gene expression profile following hypothermia and transient focal cerebral ischemia. *Neuroscience* 208:109–122

Nakayama J, Yamamoto M, Hayashi K, Satoh H, Bundo K, Kubo M, Goitsuka R, Farrar MA, Kitamura D (2009) BLNK suppresses pre-B-cell leukemogenesis through inhibition of JAK3. *Blood* 113:1483–1492

Nieoullon A, Canolle B, Masmejean F, Guillet B, Pisano P, Lortet S (2006) The neuronal excitatory amino acid transporter EAAC1/EAAT3: does it represent a major actor at the brain excitatory synapse? *J Neurochem* 98:1007–1018

Noorlander CW, de Graan PN, Nikkels PG, Schrama LH, Visser GH (2004) Distribution of glutamate transporters in the human placenta. *Placenta* 25:489–495

O’Kane RL, Martinez-Lopez I, DeJoseph MR, Vina JR, Hawkins RA (1999) Na⁽⁺⁾-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood–brain barrier. A mechanism for glutamate removal. *J Biol Chem* 274:31891–31895

Orellana DI, Quintanilla RA, Gonzalez-Billault C, Maccioni RB (2005) Role of the JAKs/STATs pathway in the intracellular calcium changes induced by interleukin-6 in hippocampal neurons. *Neurotox Res* 8:295–304

O’Shea JJ, Gadina M, Schreiber RD (2002) Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. *Cell* 109(Suppl):S121–S131

Paklakov T, Almilaji A, Munoz C, Alesutan I, Lang F (2013) PIKfyve sensitivity of hERG channels. *Cell Physiol Biochem* 31:785–794

Pathare G, Foller M, Daryadel A, Mutig K, Bogatikov E, Fajol A, Almilaji A, Michael D, Stange G, Voelkl J, Wagner CA, Bachmann S, Lang F (2012a) OSR1-sensitive renal tubular phosphate reabsorption. *Kidney Blood Press Res* 36:149–161

Pathare G, Foller M, Michael D, Walker B, Hierlmeier M, Mannheim JG, Pichler BJ, Lang F (2012b) Enhanced FGF23 serum concentrations and phosphaturia in gene targeted mice expressing WNK-resistant SPAK. *Kidney Blood Press Res* 36:355–364

Rainesalo S, Kieranen T, Saransaari P, Honkaniemi J (2005) GABA and glutamate transporters are expressed in human platelets. *Brain Res Mol Brain Res* 141:161–165

Redecker P, Pabst H (2000) Immunohistochemical study of the glutamate transporter proteins GLT-1 and GLAST in rat and gerbil pineal gland. *J Pineal Res* 28:179–184

Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. *Neuron* 13:713–725

Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. *Neuron* 16:675–686

Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Hoberg MD, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. *Nature* 433:73–77

Sandhu JK, Sikorska M, Walker PR (2002) Characterization of astrocytes derived from human NTera-2/D1 embryonal carcinoma cells. *J Neurosci Res* 68:604–614

Schmitt A, Zink M, Petroianu G, May B, Braus DF, Henn FA (2003) Decreased gene expression of glial and neuronal glutamate transporters after chronic antipsychotic treatment in rat brain. *Neurosci Lett* 347:81–84

Schniepp R, Kohler K, Ladewig T, Guenther E, Henke G, Palmada M, Boehmer C, Rothstein JD, Broer S, Lang F (2004) Retinal colocalization and in vitro interaction of the glutamate transporter EAAT3 and the serum- and glucocorticoid-inducible kinase SGK1 [correction]. *Invest Ophthalmol Vis Sci* 45:1442–1449

Shashidharan P, Huntley GW, Murray JM, Buku A, Moran T, Walsh MJ, Morrison JH, Plaitakis A (1997) Immunohistochemical localization of the neuron-specific glutamate transporter EAAC1 (EAAT3) in rat brain and spinal cord revealed by a novel monoclonal antibody. *Brain Res* 773:139–148

Shuai K, Liu B (2003) Regulation of JAK–STAT signalling in the immune system. *Nat Rev Immunol* 3:900–911

Takumi Y, Matsubara A, Danbolt NC, Laake JH, Storm-Mathisen J, Usami S, Shinkawa H, Ottersen OP (1997) Discrete cellular and subcellular localization of glutamine synthetase and the glutamate transporter GLAST in the rat vestibular end organ. *Neuroscience* 79:1137–1144

Uckun FM, Vassilev A, Dibirdik I, Tibbles H (2007) Targeting JAK3 tyrosine kinase-linked signal transduction pathways with rationally-designed inhibitors. *Anticancer Agents Med Chem* 7:612–623

Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC (1997) Differential developmental expression of the two rat brain glutamate transporter proteins GLAST and GLT. *Eur J Neurosci* 9:1646–1655

Umbach AT, Luo D, Bhavsar SK, Hosseinzadeh Z, Lang F (2013) Intestinal Na⁺ loss and volume depletion in JAK3-deficient mice. *Kidney Blood Press Res* 37:514–520

van Landeghem FK, Weiss T, von Deimling A (2007) Expression of PACAP and glutamate transporter proteins in satellite oligodendrocytes of the human CNS. *Regul Pept* 142:52–59

Walters DK, Mercher T, Gu TL, O'Hare T, Tyner JW, Loriaux M, Goss VL, Lee KA, Eide CA, Wong MJ, Stoffregen EP, McGreevey L, Nardone J, Moore SA, Crispino J, Boggon TJ, Heinrich MC, Deininger MW, Polakiewicz RD, Gilliland DG, Druker BJ (2006) Activating alleles of JAK3 in acute megakaryoblastic leukemia. *Cancer Cell* 10:65–75

Wang G, Qian P, Jackson FR, Qian G, Wu G (2008) Sequential activation of JAKs, STATs and xanthine dehydrogenase/oxidase by hypoxia in lung microvascular endothelial cells. *Int J Biochem Cell Biol* 40:461–470

Warsi J, Hosseinzadeh Z, Dong L, Paklakov T, Umbach AT, Bhavsar SK, Shumilina E, Lang F (2013) Effect of Janus kinase 3 on the peptide transporters PEPT1 and PEPT2. *J Membr Biol* 246:885–892

Yamaoka K, Min B, Zhou YJ, Paul WE, O'Shea JJ (2005) Jak3 negatively regulates dendritic-cell cytokine production and survival. *Blood* 106:3227–3233

Zoia C, Cogliati T, Tagliabue E, Cavaletti G, Sala G, Galimberti G, Rivolta I, Rossi V, Frattola L, Ferrarese C (2004) Glutamate transporters in platelets: EAAT1 decrease in aging and in Alzheimer's disease. *Neurobiol Aging* 25:149–157